Impact of Boundary-layer Cutting and Flow Conditioning on Free-surface Behavior in Turbulent Liquid Sheets

نویسندگان

  • S. G. Durbin
  • M. Yoda
  • S. I. Abdel-Khalik
  • G. Woodruff
چکیده

The HYLIFE-II conceptual design uses arrays of high-speed oscillating and stationary slab jets, or turbulent liquid sheets, to protect the reactor chamber first walls. A major issue in thick liquid protection is the hydrodynamic source term due to the primary turbulent breakup of the protective slab jets. During turbulent breakup, drops are continuously ejected from the surface of turbulent liquid sheets and convected into the interior of the cavity, where they can interfere with driver propagation and target injection. Experimental data for vertical turbulent sheets of water issuing downwards from nozzles of thickness (small dimension) δ = 1 cm into ambient air are compared with empirical correlations at a nearly prototypical Reynolds number Re = 1.2 × 10. A simple collection technique was used to estimate the amount of mass ejected from the jet surface. The effectiveness of boundary-layer cutting at various “depths” into the flow to reduce the source term and improve surface smoothness was evaluated. In all cases boundary-layer cutting was implemented immediately downstream of the nozzle exit. Planar laser-induced fluorescence (PLIF) was used to visualize the free-surface geometry of the liquid sheet in the near-field region up to 25δ downstream of the nozzle exit. Large-scale structures at the edges of the sheet, typically observed for Re < 5.0 × 10, reappeared at Re = 1.2 × 10 for sheets with boundary-layer cutting. The results indicate that boundary-layer cutting can be used to suppress drop formation, i.e. the hydrodynamic source term, for a wellconditioned jet but is not a substitute for well-designed flow conditioning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flow Conditioning Design in Thick Liquid Protection

The HYLIFE-II conceptual design proposed using arrays of high-speed oscillating and stationary slab jets, or turbulent liquid sheets, to protect the reactor chamber first walls from damaging neutrons, ions and X-rays. Flow conditioning can be used to reduce turbulent fluctuations in these liquid sheets and thereby reduce surface ripple, or free-surface fluctuations, and delay jet breakup. Sever...

متن کامل

Towards an Analytical Model for Film Cooling Prediction using Integral Turbulent Boundary layer

The objective of this work is to develop deep theoretical methods that are based on the solution of the integral boundary layer equations for investigating film cooling in liquid rocket engine. The integral model assumes that heat is transferred from hot free stream gas to the liquid film both by convection and radiation. The mass is transferred to the free srteam gas by the well-known blowing ...

متن کامل

THREE DIMENSIONAL MODELING OF TURBULENT FLOW WITH FREE SURFACE IN MOLD FILLING

In the present study a Finite Difference Method has been developed to model the transient incompressible turbulent free surface fluid flow. A single fluid has been selected for modeling of mold filling and The SOLA VOF 3D technique was modified to increase the accuracy of simulation of filling phenomena for shape castings. For modeling the turbulence phenomena k-e standard model was used. In or...

متن کامل

An Overview of Georgia Tech Studies on the Fluid Dynamics Aspects of Liquid Protection Schemes for Fusion Reactors

This paper provides an overview of experimental and numerical studies conducted at Georgia Tech to assess the fluid dynamics aspects of liquid protection schemes for fusion energy reactors. The problems described here include: (1) Dynamics of slab jets for thick liquid protection, including the effect of nozzle design, flow conditioning, and boundary layer cutting on jet surface smoothness; (2)...

متن کامل

Numerical Simulation of Separation Bubble on Elliptic Cylinders Using Three-equation k-? Turbulence Model

Occurrence of laminar separation bubbles on solid walls of an elliptic cylinder has been simulated using a recently developed transitional model for boundary layer flows. Computational method is based on the solution of the Reynolds averaged Navier-Stokes (RANS) equations and the eddy-viscosity concept. Transitional model tries to simulate streamwise fluctuations, induced by freestream turbulen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004